Using ADO with Oracle

Accessing Oracle using ADO in Delphi

Little, if any, of the Oracle literature on the this subject mentions Delphi. Delve into Metalink and you will find several examples of using ADO to access Oracle data from VB. The excellent white paper, “Oracle Provider for OLE DB” by Jenny Besaw (30-November-2000) available to Metalink subscribers, for example, exclusively uses VB to demonstrate important aspects of using ADO.

There are useful Metalink references (for example document refs: 90351.1, 90016.1, 115096.1), but aside from the occasional nod in the direction of C++, Delphi doesn’t get a mention. I can’t believe I am the only person around who believes the Delphi IDE to be one of the best on the marketplace. Oracle clearly like the Borland way of doing things – after all JDeveloper is based on Delphi’s stable mate, JBuilder. So, what could be so wrong in wanting to use Delphi to build applications which access Oracle?

Well, nothing. There may not be much literature around, but it can be done! The ADO encapsulation offered in Delphi is simplicity itself to master, and, with a little perseverance, it can be made to interact with Oracle. However, the lack of regular support means there is a steep learning curve. Whilst talking in general terms about some of the key issues regarding the use of ADO, this article aims to reduce that curve a little.

So what is ADO?

Microsoft ActiveX® Data Objects (ADO) is a high-level object-oriented interface to OLE DB data which presents the applications programmer with a set of objects, including a database independent recordset.

Before the performance gurus amongst you begin to complain about having extra layers of abstraction, we should recognise that there are many occasions when using native Oracle drivers may not be appropriate:

· An application which accesses different database platforms simultaneously

· An application which needs has the ability to be used with any customer-defined database back end

· In an environment where (expensive) C++ programmers with low-level database experience are hard to acquire, but where Delphi or VB skills are less hard to find

In any case, the performance overheads involved here are not in the same order of magnitude as in the bad old days of early ODBC drivers!

Despite this being a Microsoft “standard”, which will therefore be worrisome to many developers, the other benefit of using ADO is that you can assume that the database access layer is already in place, provided your clients are running MS Windows, because ADO and OLE DB are supplied by Microsoft and installed with Windows. No need to worry about installing extras like the Borland Database Engine (BDE) on client machines together with your application. An ADO-based application requires that ADO 2.1 be installed on the client computer.

General ADO Programming Model

[image: image1.png]© PersonnalDl{

PersonnelConnection

[image: image2.emf]Command TADOQuery, TADOStoredProc, TADOCommand Recordset TADODataSet, TADOQuery, TADOStoredProc, TADOTable Params Connection TADOConnection Error ADO Provider ODBC OLE DB Databases Other data providers

In Figure 1 the ADO object model is to the left of the provider and italics under the ADO object names are the Delphi components which contain these objects.

Creating a separate TADOConnection component is not a requirement as you can specify the connection information on a Command item. However, this is not often to be recommended because, with a TADOConnection, you can control the attributes and conditions of a connection for every command object in the application. Having created a Connection, the developer can set properties to control several important aspects of the connection including the cursor location (client or server) and connection timeout. Furthermore, using the Connection’s associated methods, it is possible to implement transaction processing and retrieve metadata about the database to which this component connects.
The two main Command objects used for returning datasets are TADOQuery and TADOStoredProc. The former allows the developer to set the SQL property (a list of strings) to any valid SQL query. If this is a SELECT, then a recordset will be returned. For commands not returning data, such as DDL, or calls to Stored Procedures which don’t have OUT parameters, the TADOCommand can be used to reduce the overhead of using a dataset component.

A TADOStoredProc can return a recordset by declaring the OUT parameter as a REF CURSOR. Alternatively a single value OUT can be picked up from the Tparameters property after setting the appropriate IN parameters and calling the ExecQuery method . This technique of returning data to an application is examined in the section on stored procedures, below.

OLE DB

Real world information systems are increasingly made up from a series of different technologies. Organisations may have both Mainframes and client-server systems, each with different databases and applications on them. Furthermore, there is often a need for the PC desktop to be the presenter of information.

OLE DB responds to this scenario by setting out a specification for a set of low-level data access interfaces to work against many types of data store in a standard way. It is possible to call OLE DB methods directly, but the ADO encapsulation hides the low-level complexities and lets the developer concentrate on application building.

The first choice to be made by the developer is which provider to use. When they launched OLE DB, Microsoft made a developer kit available so that database vendors, and others, could create their own OLE DB providers. However, they also provided an OLE DB provider specifically for Oracle.

Oracle have since produced their own OLE DB providers. Use of an Oracle provider is preferred because it is a native OLE DB provider and gives access to Oracle-specific database features, such as support for LOBs, PL/SQL stored procedures, and REF CURSORs. Whilst Client needs to be 8i or higher, you can use OLE DB to access data from Oracle databases of version 7.3.4 or higher. Only one version of OraOLEDB can exist on a machine at a time, and, because it is COM-based, OLE DB is unable to cope with multiple Oracle homes.

Connecting

In Delphi the ADO Connection object is encapsulated by the TADOConnection component. By using a single ADOConnection you can provide access to the database for all your ADO queries and stored procedures.

A connection string is made up of several items, separated by semi-colons:

Provider=OraOLEDB.Oracle.1;Password=a_password;Persist Security Info=True;User ID=a_user;Data Source=sms7;Extended Properties="plsqlrset=1"

The PLSQLRSet property is not well documented. It is an “extended property” of the connection data type, and its default value is zero. However, if you wish to return datasets from stored procedures the value should be one. On top of it being less than well documented, failure to set this property results in a rather unhelpful error (ORA-06550: Wrong number of type of arguments in call) that gives the novice developer little clue that the problem is with the connection string!

Delphi is happy for you to use a Data Link (.UDL) file instead of a connection string. Not hard-coding the connection string at design time has obvious advantages in terms of flexible deployment. In theory you could write your application code such that it gets its connection information from a file in a specific location on the client machine, and then not care what provider the client was using. In practice, testing your application against any provider it is likely to encounter is essential, as there are differences in implementation between providers.

A UDL file is a Microsoft Data Link file. The extension is automatically recognised by Windows, and the a new UDL can be created in Windows98 by selecting File, New, Data Link File from Explorer, which launches a wizard to help the user fill in the required information. NT does have the association, but you can’t use File, New to create a new UDL. Instead, use your editor to create an empty file and give it the UDL extension. Then right click on that file in Explorer, and select Properties. This will launch the same wizard.

Fill in the required information and save the UDL. The default place to save this is Program Files\Common Files\System\OLE DB\Data Links. If you fail to give the full path when declaring the file name, the application will look in this directory for the file.

Steps to Creating a connection:

Create the UDL file: Select the provider from the first tab. Use Oracle Provider for OLE DB, subject to the comments earlier. Then fill in the Connection tab, and click the TEST button. Here we have an example of connecting to an Oracle database called SMS7, as a user called A_user:

[image: image3.jpg]Data Link Properties

Pravider Connection | Advanced | All |

Specify the following to connectto this dater
1. Enterthe date source and/arlocation of the dater

Data Source: [sms?

Locatior:

2 Enterinformation to log onto the server:
& Wee Windlaws T ntegrated se sy,

& Use & specific user name and password

Username: [s_user

Password:
I Blankpassword 7 Allow saving passward

3. Enterhe el cetalog o use:

ok | camel | Help

[image: image4.jpg]Edit Property Value

Property Description
[Extended Properties

Property Value

plsgrset=1

Reset Value Cancel

Do not forget to set the “plsqlrset=1” (by double clicking “Extended Properties” on the All tab) if you intend to return record sets from stored procedures:

[image: image5.jpg]Debugger Exception No

s

Project DemoADO.exe raised exception class EDatabaseErar with message ‘ADOTablel: Type mismatch
forfield 'CATALOGUE_NUMBER!, expecting; Integer actual: BCD'. Process stapped. Use Step or Runto
continue.

Help

I™ View CPU Window

[image: image6.jpg]Project Manager Object Inspector |~ 4¢[»

[ADOTable1 TADOTeble 5]
Properies | Events
Acive Felse
AutoCelcFields | True
CacheSize I
CommandTimeout 30
[BConnection
ConnectionSting
CursorLocation | clUseServer
CusorType |ciStatic
EnsbleBCD Felse
@ExecuteOptions [
Filter
Fiteredt Felse
IndexFieldNemes
IndexName
LockType tOptimistic
MershalOptions | moMarshalAll
MesterFislds
MesterSourca
Medecods |0
Name ADOTablel
ReadOnly Folse
TebleDirect |False
TebleName |CD
Tag 0

Wishown

In Delphi: Create an Object of type TADOConnection. Start by building a data module to hold the database access objects. From the ADO tab of the Component Palette, add an ADOConnection, then press F11 to edit the properties:

[image: image7.jpg]Project Manager Object Inspectoy

[ADOGuery TADOQuery
Propetties | Events
Active False
AutoCalcFields | True
CacheSize 1
CommandTimeout 30
Connection
ConnectionStiing
Cursorlocation | clUseClient
CursorType cistatic
DataSource
EnableBCD True
ExecuteOptions |[]
Filter
Fittered Faise
LockType tOpimistic
MarshalOptions | moMarshalAll
MaxRecords [0
Name ADOQuery1
PeramCheck |True
Parameters (TParameters)
Prepared False
saL (TStings)
Tag 0

Al shown

[image: image8.png]© PersonnalDl{

PersonnelConnection

Beware of setting Connect:=True at design time. Delphi rather unhelpfully bombs out without warning when you open the form with an active Connection Object on it if that connection cannot actually be made for any reason. You then need to resort to using a text editor to manually change the property value in the .DFM file, before restarting Delphi.

The best solution is to set this property at runtime, perhaps as part of the OnCreate processing for the form. In addition, if this is right for your particular application, you could log the user in, saving them from having to log in directly to Oracle. If you explicitly log in for the user the ADOConnection.LoginPrompt property should be set to False.

[image: image9.jpg]rsonnelDM.PersannelConnection ConnectionString

Source of Cannection

& Use Data Link File

~| Browse

© Use Comnecion Sting

i)

[image: image10.jpg]Project Manager Objzct Inspector

PersonnelConnection TADOConnection

Properties |Evgms |

@Attibutes i
CommandTimeout |30
Connected =]
ConnectionSting | FILE NAME=CA\Prograrm Files\Co
ConnectionTimeout |15
ConnectOptions | coCannectUnspecified
CursorLocation clUseClient
DefaultDatabase
IsalationL evel iiCursorStabilty
KeepConnection | True
LoginPrompt True
Mode. criUnknown
Name PersonnelCannection
Provider OraOLEDB Oracle 1
Tag 0

Al shown

In figure 5 the connection is made at runtime when the data module is created, by calling the Open method of the PesonnelConnection object. A message dialogue is displayed to the user if the connection fails because the call to Open is made from the safety of a TRY block. Not dissimilar to the PL/SQL EXCEPTION block, the developer can use the EXCEPT block to handle all exceptions, or specific ones. In this case any exception will generate the message to the user.

Now we have a connection, we can begin to work our database. The examples that follow return data to a simple Delphi form in a variety of ways. There are arguments about whether or not to use stored procedures to return data, but they will not be aired here. Instead, I just give examples of using both queries and stored procedures, and leave the debate to another time.

Recordsets

Recordset objects are at the heart of ADO. The Recordset holds a set of rows (or records) and columns (or fields) which can contain selected data that the user can manipulate. It can communicate with the underlying database to allow live editing, deletes and updates. However, don’t forget that the limits of what you are able to do can be set by the functionality of the data provider, rather than by the ADO model itself.

Data Types

The fact that different databases and programming languages deal with data types in no standard fashion is often the biggest single headache for database professionals, and using Delphi with Oracle is no exception. As usual, dates can be troublesome. By making good use of the TO_DATE (Oracle) and DateToStr (Delphi) functions we can easily get round this problem by passing Varchar and String representations of dates between the environments.

What you might not expect to be a problem, however, is the simple INTEGER. Unfortunately, even numbers can be a problem. The crux of the problem here is Oracle’s preference for storing integers as NUMBER(38). Delphi gets confused when it is passed an integer which is so large and tries to help by assuming that the value is Binary Coded Decimal (BCD). When you see the error displayed in Figure 6, you know this is your problem.

[image: image11.jpg]2lines.

SELECT * FROM CD]
where DAILY_COST = de

] _l_I
Code Editor. Cancel Help

[image: image12.jpg][TParameters[y] TParameter

Properties |Evgms

tribites i
DataType fiFloat
Direction polinput
Name dc

NumericScale |0

Precision 0

Figure 6 was generated by just letting the default actions take place using an ADOTable to access the Oracle table defined in Figure 7.

[image: image13.jpg][TPerameters[y) TParameter 7]

Properties |Evgms

dtibutes i
DetaType fiSiting
Direction pdinput
Name
NumericSeale [0
Precision 0
Size 50

alue (Nl

Al shown

There are two ways around this problem. If you are creating the underlying database as part of the application build, then explicitly define the size of the number in the create statement:

CATALOGUE_NUMBER NUMBER(9) NOT NULL

This simple step means that you can use integers in your application and have no problems dealing with what Oracle passes over.

However, if you are less fortunate, and are building an application sitting on top of a live database in which some columns have been defined as NUMBER, you need to alter the way Delphi treats Oracle data. Instead of allowing Delphi to generate recordset fields automatically, use the fields editor to create a persistent field object of the same name as the offending NUMBER field, and amend the FieldType to TVariantField. However, arithmetic operations cannot be performed on numbers accessed through a TVariantField object. If this is required, one solution is to create a client-side calculated field (again using the fields editor) and then convert the variant when an OnCalcFields event occurs (Cat_Int in Figure 8).

[image: image14.jpg]Jr- Editing ADOStoredPr&c1
Lal e

Name

Value

[image: image15.jpg]X
[ADOStoredProct TADOStredProc |«

Properies | Everts

Active False
AutoCalcFields | True
CacheSize 1
CommandTimeout 30
Connection PersonnelCannection
ConnectionStiing
Cursorlocation | clUseClient
CursorType cikeyset
DataSource
EnableBCD True
xecuteOptions [}
Filter
Fittered Faise
LockType tOpimistic

MarshalOptions | moMarshalAll
MaxRecords |0

Name ADOStoredProct
Parameters

Prepared

ProcedureName |InsenACD

Tag 0

Al shown

Tables and Queries

The simplest way to create a recordset from an Oracle table is the TADOTable. By setting the TableName property, by default, you effectively get a “Select * from tablename” recordset which is editable. If the user amends the recordset the source database is updated and committed. By default, OraOLEDB is in an autocommit mode. Setting ReadOnly:=True prevents live editing. TableName can be selected from a dropdown list of all tables visible to the connection if you set the Connection property to point at a valid ADOConnection object. In figure 9 we are using the PersonnelConnection we created earlier.

When wanting to return a recordset based on an SQL SELECT, use the TADOQuery component. You can actually write any valid SQL statement in the SQL property, including DDL. However, the TADOCommand component is preferred for any SQL which will not result in a recordset as it is a simple component and does not carry the overhead of being a dataset.

Many properties are shared by ADOTable and ADOQuery (Figure 9). In general, however, the ADOQuery component should not be used to allow the user to edit data. If the recordset is as a result of a join, the recordset will be Read Only anyway with some providers.

WDEQD

As an example of ADO functionality being limited by the provider, the LockType property makes it look as if you can opt to use pessimistic locking. Indeed, you can actually set that property :=ltPessimistic, but Oracle Provider for OLE DB would treat it just the same as the default ltLockOptimistic. LockType values supported are: ReadOnly, BatchOptimistic, and Optimistic. Similarly, setting CursorType to ctOpenKeyset or ctDynamic is not supported by Oracle Provider for OLE DB.

Generally the default settings for these two properties are fine, but for performance reasons you may consider changing them. One early decision to be made is where the cursor processing should take place. The default is for it to be at client-side. This is usually preferred as it allows flexibility to manipulate the recordset in ways not supported by the Server. However, in the case of large recordsets which may make a client PC struggle, you should set CursorLoction to clUseServer.

If the cursor location is UseClient you must use a Static cursor which takes a copy of the rows for local use. If your cursor is located at the server, you may use a ForwardOnly cursor which will improve performance but, as the name suggests, it constrains the application’s ability to navigate the dataset.

In both cases here the default value for MaxRecords of zero is set, which means there is no limit to the number of records returned. Setting this to a positive value to prevent too much data being returned to the client can be useful, but more useful still is the CacheSize property. This defines how many rows to retrieve at one time into local memory. Set this to 50, for example, and when the dataset is first activated the provider puts the first 50 rows into local memory. As the row pointer is moved through the recordset, the provider retrieves the data from the local memory buffer. Statement-level read consistency is maintained so that data brought to the local buffer from the server excludes any changes made to it by concurrent users.

In the ADOQuery object inspector, double-clicking the SQL property pops up a code editor to help create a list of strings containing the SQL which will generate a recordset (see Figure 10).

Dynamic SQL can be generated using the parameter property. In the example, the value of :dc can be bound at runtime, allowing the user the potential to select a value. The parameter dc has been defined in the Object Inspector. The value of 1.5 has been set, but a user-provided value could be used. The code in Figure 11 takes the value a user has entered into an edit box (named eCost) and then re-queries the database by calling the OPEN method.

Stored Procedures

Stored procedures are a feature of many RDBMS, and the ADOStoredProc Delphi component allows the developer to use server-side PL/SQL procedures and packages and make use of existing business rules.

Mastering parameters is the key to the successful use of ADOStoredProcs. For each procedure the developer should know how many parameters there are, in what order they appear in the parameter list definition, which direction they take (IN, OUT and INOUT are supported), and what type they are.

In Figure 12 we have created an ADOStoredProc which calls the Oracle stored procedure called InsertACD. We have created 3 parameters which will get passed to the server. PTitle and pCost are IN, and will be used in an INSERT, and pMaxVal is an OUT. Figure 13 shows the procedure definition:

Note that the naming of the parameters on ADOStoredProc object is irrelevant: the OUT parameter is called pMaxVal in the ADO object, but pMaxCost in the PL/SQL. Parameters are passed by position, not by name. The snippet of code in Figure 14 demonstrates the setting of the IN parameters and the picking up of the OUT parameter. ADOStoredProc parameters can be referred to using the ParamByName method, or by directly picking the parameter number (the first parameter being 0). Both techniques are used here.

When ExecProc is called the PL/SQL procedure is run and a new row is inserted into the CD2 table. The highest daily_cost is then bound to the OUT parameter and that is picked up by the final line of code which places the value in a text box on a Form.

Because Oracle Provider for OLE DB allows procedures to have an argument of REF CURSOR type, using the TADOStoredProc component enables the developer to return read-only recordsets from stored procedures. There is no predefined datatype for REF CURSOR in the OLE DB specification so you do not bind this parameter. Instead, the recordset is automatically created after a successful call to OPEN, and an ADOStoredProc component then acts like any other recordset-based component.

On the Oracle side of the equation we now need to define a REF CURSOR type. Using a weakly typed cursor gives the flexibility to return different types of row with the same cursor, though that makes the process more prone to error. In the example below we create a weak type in the package head, called CD_Cursor. That type is then used by an OUT parameter in the procedure CDLIST. Alternatively, we could have defined all the cursors we will use in an application in one CURSORS package.

In the body, the call to OPEN pList FOR, followed by a SELECT statement, gives us our required cursor, which is an OUT parameter. However, we can simply treat the ADOStoredProc as a recordset after the call to Open. Figure 16 demonstrates this by calling the Last method to position the current record pointer at the last record of the recordset. This also illustrates runtime creation of parameters, using CreateParameter(paramname,paramtype,paramdirection,paramsize,paramvalue) with code, rather than the Object Inspector. By using data-aware controls, through a TDatasource, these records could be displayed to the user, perhaps in a grid, or a listbox.

Creating editable data using stored procedures is more complicated. One relatively simple solution is to copy the generated recordset into a local memory-only table, and allow the user to manipulate that by attaching a TDatasourse to it. Once the user has finished, you can then call a stored procedure to carry out the updates, inserts and deletes.

Errors

Reference to the ADO programming model (Figure 1) reveals that there is an Error object. In fact, handling the error object is something that Delphi does do very badly. There is next to no documentation, and what little there is tries to frighten the user off with comments like: “Using the Errors Collection object directly is not recommended unless you are familiar with connection object operations. Consult the Microsoft Data Store SDK help for specific information on using ADO Errors Collection objects”.

Maybe so, but it is nice to have some control over what you hit your user with when things go wrong. In actual fact ADOConnection.Errors.item has a property called Description which is very useful. In the snippet below (Figure 17) there is an example of simply capturing the returned error in part of a TRY block exception handler. In this case the stored procedure InsertACD is fired. If it fails, the MessageDlg function is called to pop up a message to the user which warns that the commit has failed and includes the error message returned to ADO by Oracle.

Conclusion

Although the fact that ADO is a Microsoft initiative may put many developers off, there is much to be said in its favour. The complex OLE DB calls are nicely hidden by the ADO encapsulation, and a developer can rapidly develop data-aware applications which sit on many different data sources, including non-relational databases and spreadsheets.

As usual, Borland’s version is easy to use, particularly if you are already a Delphi user. ADO functionality comes with Delphi Professional Version 6. A 60 day trial is currently downloadable (http://www.borland.com/delphi/tryitnow.html). That said, nothing covered in this article is Delphi specific. Whatever your preferred IDE, using ADO can help application builders create data-aware RAD solutions quickly, and effectively.

Figure � SEQ Figure * ARABIC �5�

Use the Test button to try out the connection.

Figure � SEQ Figure * ARABIC �4�

Figure � SEQ Figure * ARABIC �3�

Figure � SEQ Figure * ARABIC �2�

Figure � SEQ Figure * ARABIC �1�

procedure TStaff_DMF.DataModuleCreate(Sender: TObject);

begin

//when we start up, let’s get the ADO connection sorted

 TRY

 PersonnelConnection.Open('a_user','a_password');

 EXCEPT

 MessageDlg('Fatal error: Invalid Connection String (Please refer to user manual)',

 mtWarning,[mbOK],0) ;

 halt ;

 END ; //try

end ; //procedure

Dbl-Click

F11

� EMBED Word.Picture.8 ���

Set LoginPrompt:=False when explicitly logging on through the connection string or Open method

Figure � SEQ Figure * ARABIC �6�

CREATE TABLE CD (

 			CATALOGUE_NUMBER NUMBER NOT NULL,

 			TITLE VARCHAR2 (30) NOT NULL,

 			Etc….

Identical problem if this had been:

Integer or SmallInt

Figure 7

procedure TPersonnelDM.ADOTable1CalcFields(DataSet: TDataSet);

begin

 	ADOTable1Cat_int.value:=ADOTable1Catalogue_Number.AsInteger ;

end;

Figure 8

Figure 9

Figure 10

Figure 11

With PersonnelDM.ADOQuery2 do begin

 close ;

 Parameters.ParamByName('dc').value := StrToFloat(eCost.Text);

 open ;

 end ;

Figure 12

Figure 13

PROCEDURE InsertACD(pTitle IN CD2.TITLE%type, pCost IN CD2.DAILY_COST%type, pMaxCost OUT CD2.DAILY_COST%type)

IS

BEGIN

	 INSERT INTO CD2 (CATALOGUE_NUMBER, TITLE, DAILY_COST)

	 VALUES		 (seq_cd.nextval,pTitle ,pCost) ;

	 Commit ;

	 SELECT Max(DAILY_COST)INTO pMaxCost

	 FROM CD2 ;

END InsertACD;

Figure 14

with PersonnelDM.ADOStoredProc1 do begin

//set the params = to the edit box values

parameters.ParamByName('pTitle').Value:=eTitle.Text ; parameters.ParamByName('pCost').Value:=StrToFloat(eDailyCost.Text) ;

 ExecProc ;	//fire the procedure

 txtMax.Caption:=IntToStr(parameters[2].Value) ;

 end ; //with

Figure 15

CREATE OR REPLACE PACKAGE CD_package IS

 TYPE CD_cursor IS REF CURSOR;

 PROCEDURE CDList (pCost IN Number, pList OUT CD_Cursor) ;

END CD_package;

/

CREATE OR REPLACE PACKAGE BODY CD_package AS

PROCEDURE CDList (pCost IN Number, pList OUT CD_Cursor) IS

-- returns a list of titles available at cost pCost

BEGIN

 OPEN pList FOR

 SELECT Distinct Title

 FROM CD

 WHERE daily_cost = pCost ;

END CDList;

END CD_package;

/

Procedure TmainForm.bFillClick(Sender: TObject);

begin

 With PersonnelDM.ADOStoredProc2 do begin

 Close ;

 //start by creating IN param

 Parameters.clear ; //get rid of any previous params

 Parameters.CreateParameter('pCost', ftFloat, pdInput, 0, StrToFloat(eDailyCost.text));

 //nb: OUT parameter is NOT created

 Open ;

 Last ;

 end ; //with

end; //procedure

Figure 16

Try

 InsertACD.ExecProc ;

Except

 MessageDlg('Database unable to commit this record because:'+ #10 + #13 +

 PersonnelConnection.Errors.Item[0].Description,

 mtWarning,[mbOK],0) ;

end ; //try block

Figure 17

©Peter Lake
Page 1

_1071330141.doc
[image: image1.png]© PersonnalDl{

PersonnelConnection

